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Matching Small Loop Antennas to rfPIC™ Devices
INTRODUCTION

In close proximity to the human body, small loop anten-
nas outperform small dipole and monopole antennas
[1]. Their size, robustness and low manufacturing cost
have made small loops the most popular antenna for
use in miniature key fob transmitters. A small loop
antenna typically consists of a circular, square or rect-
angular copper trace on a printed circuit board. In some
cases, discrete wires are shaped into loops.

FIGURE 1: EQUIVALENT CIRCUIT 
MODEL OF A SMALL LOOP 
ANTENNA

Figure 1 shows an equivalent circuit of a loop antenna
consisting of two resistors and an inductor. The resistor
Rrad, or radiation resistance, models the radio fre-
quency energy actually radiated by the antenna. Rrad
models the desired function of the antenna, which is to
radiate RF power. Assuming a uniform current I flowing
through the loop, the power consumed by Rrad (i.e.,
the radiated power) is shown in Equation 1.

EQUATION 1:

The second resistor in the model, Rloss, models
losses. Rloss models an undesired, but inevitable func-
tion of the antenna: to waste valuable RF energy by
converting it to heat. If Rloss is larger than Rrad, the
antenna is inefficient, since most of the available RF
power will end up as heat. With current I flowing
through the loop, the lost power (converted to heat) is
given by Equation 2. 

EQUATION 2:

Note that we assume that the current I is uniform
around the small loop. This assumption is only valid if
the loop circumference is smaller than one fifth of a
wavelength.

For completeness, note that the total power delivered
to the antenna is given by the sum of the radiated
power and losses. From Equation 1 and Equation 2, we
get Equation 3:

EQUATION 3:

In practice, the loop antenna designer has little control
over Rrad and Rloss. Rrad is determined by the area of
the loop antenna and Rloss is a function of conductor
size and conductivity, as shown in Equation 4 and 5.

CALCULATING THE LOOP 
RADIATION RESISTANCE AND LOSS 
RESISTANCE

The radiation resistance Rrad of a small loop antenna
is given by reference [2] as:

EQUATION 4:

where A is the area of the loop in square meter and λ is
the wavelength in meters at the radiation frequency. It
should be clear from Equation 4 that the radiation resis-
tance of small loops will be in the milliohm range. The
wavelength λ can be calculated as λ = 3⋅108/f where f
is the radiating frequency in Hertz.

The loss resistance Rloss of a loop antenna is given by
reference [2] as:

EQUATION 5:
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where l is the perimeter (circumference) of the loop in
meters, w is the width of the PCB track in meters, f is
the radiating frequency in Hertz, µ = 4π⋅10-7 and σ is
the conductivity of the PCB track in Siemens per meter.
Copper conductivity is typically 5.7⋅107 S/m.

Equation 5 is essentially the result of the ‘skin effect’ [2]
at high frequency for nonmagnetic materials. In this
case, the perimeter of the conductor, normally 2πr for a
round wire, has been approximated by 2w. In other
words, its perimeter is 2 times the PCB trace width.

CALCULATING THE INDUCTANCE OF 
THE LOOP

The third component in the model of Figure 1 is the
loop inductance L. Inductance is primarily a magnetic
effect, and general inductance formulas for even sim-
ple shapes are hard to derive. Several formulas for cal-
culating the inductance of rectangular loops have been
proposed. Most of these formulas are lengthy [2,3,4].
Grover’s book [3], which is the primary reference work
on inductance, provides one remarkably simple, but
accurate formula for calculating the inductance of poly-
gons. This formula includes, but is not limited to rectan-
gular loops. The inductance formula given by Grover
[3] is:

EQUATION 6:

where µ = 4π⋅10-7, A is the area of the loop in square
meters, l is the perimeter (circumference) of the loop in
meters, and w is the width of the copper trace in meters.

CALCULATION OF LOOP 
PARAMETERS

EXAMPLE 1:

Suppose a designer is constrained by PCB loop
antenna dimensions of 34 mm x 12 mm. The copper
track width is 1 mm.

The total loop resistance, that is the sum of radiation
resistance and loss resistance, is calculated to be
0.249 Ω.

FIGURE 2: PCB COPPER LOOP  
34 mm x 12 mm x 1 mm

Using Equation 4, we calculate radiation resistance at
434 MHz as Rrad = 0.0227 Ω.

Using Equation 5, we calculate loss resistance at
434 MHz as Rloss = 0.252 Ω (σ of copper 5.7*107).

Using Equation 6, we calculate loop inductance as
L = 65.67 nH.

Summing the loss resistance and radiation resistance,
total loop resistance is calculated to be r = 0.275 Ω.

Matching the Loop to a 1 kΩ Source 
Impedance

A typical CMOS radio frequency integrated circuit, such
as the rfPIC12C509AG, has a source impedance
around 1 kΩ. In the example above, the impedance of
a typical loop has an inductance of 65.67 nH in series
with a small resistance of 0.275 Ω. To match such an
antenna to the source, this low resistance and high
inductive reactance must be transformed to 1 kΩ.

The impedance transformation required is achieved by
adding a second, smaller loop to our antenna, as well
as a capacitor C, as shown in Figure 3.

FIGURE 3: ADDING A SMALL SECOND 
LOOP AND CAPACITOR

The magnetic coupling between the large loop and
small loop results in transformer action. The large loop,
or loop antenna, makes up the secondary winding of
our transformer. The small loop becomes the primary
winding of our transformer. 

Figure 4 is a revised circuit model of the loop antenna,
showing the transformer action. The loop antenna's
total resistance r, consisting of Rrad + Rloss, forms the
resistive load in the secondary circuit. Also note a
capacitance C in the secondary circuit. Capacitor C is
primarily used to cancel the loop inductance LS.  The
capacitance may be approximated as follows:

EQUATION 7:
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FIGURE 4: REVISED LOOP ANTENNA 
EQUIVALENT CIRCUIT 

MAGNETIC COUPLING

Magnetic coupling between the primary and secondary
windings is at the root of the impedance transformation.
We now write the basic voltage and current equations
for the above magnetically coupled circuit: 

EQUATION 8:  

where Vp is the primary voltage, Ip the primary current,
Is the secondary current and ω the angular frequency,
equal to 2⋅π⋅f. M is the mutual inductance, which is a
function of the degree of magnetic coupling between
the two loops.

By using Equation 8, the real part (resistive portion) of
the load impedance as seen from the primary side of
the transformer can be derived:

EQUATION 9:

Near resonance the term 

becomes small, so that it is possible to estimate the
resistive load as seen from the primary side by:

EQUATION 10:

Equation 10 shows how the transformer action trans-
lates the low loop resistance r of the small loop
antenna:

• The resistance is inverted.

• The inverted resistance is then multiplied by the 
square of the mutual reactance, (ωM)2. 

Equation 10 can be rewritten as:

EQUATION 11:

Equation 11 shows the mutual inductance needed to
transform a loop impedance of r ohm into a needed
source impedance of Rp ohm.

Next, we find a way to calculate mutual inductance M
as a function of loop dimensions.

Obtaining a Given Mutual Inductance

A formula for the calculation of mutual inductance
between two off-center, coplanar rectangles is daunt-
ing. However, two reasonable assumptions simplify the
calculation significantly. The assumptions are:

1. Assume that only one side of the loop antenna
couples magnetically to the small loop. The
other three sides are much further away, so we
may neglect their effect. This assumption simpli-
fies the mutual inductance calculation problem
to that of mutual inductance between a straight
wire (or PCB track), and the small loop, as
drawn in Figure 5.

FIGURE 5: USING ONLY ONE SIDE OF 
THE LARGE LOOP

2. It is assumed that the straight wire of Figure 5
stretches to infinity, as drawn in Figure 6. This is
reasonable because the part of the wire close to
the loop is the dominating contributor of mag-
netic flux in the small loop.
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FIGURE 6: INFINITE WIRE AND SMALL 
LOOP

The two assumptions greatly simplify the calculation of
mutual inductance. The mutual inductance of the loop-
and-wire of Figure 6 is a popular college physics [5]
problem with a compact result:

EQUATION 12:

Where M is mutual inductance in Henry, la is the rect-
angle dimension parallel to the wire, lb is the rectangle
dimension perpendicular to the wire, and w is the width
of the PCB track. All dimensions are in meter, and
µ = 4π⋅10-7.

By setting the rectangle dimension lb to 2 times the
PCB track width, in other words, setting lb = 2w, we find
that Equation 12 simplifies to:

EQUATION 13:

By combining Equations 11 and 13, an expression for
loop dimension la is found as follows:

EQUATION 14:

Equation 14 is the final result and provides a simple
method to match to a small loop antenna, which is sum-
marized below.

1. Calculate the loop series resistance r using
Equations 4 and 5.

2. Determine the required impedance Rp.
3. Calculate la of a small matching loop using

Equation 14.

EXAMPLE 2:

Continuing our loop antenna of Example 1:

1. From Example 1, we calculated the loop series
resistance as r = 0.275 Ω

2. The needed antenna impedance is 1 kΩ.
3. From Equation 14, we calculate la = 13.8 mm,

using f = 434 MHz.

CONCLUSION

A simple method to match a small loop antenna has
been found. By adding a small primary loop and by
controlling the mutual inductance of the resulting trans-
former, the low loop resistance is transformed to the
value desired for maximum power transfer.
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APPENDIX A: COMPLEX IMPEDANCE

Equation 9 shows only the real part of the primary side impedance. The entire complex impedance as seen on the pri-
mary side is:

EQUATION 15:

M is mutual inductance, r is loop resistance, Ls is secondary (large) loop inductance and Lp is primary loop inductance.
Lp and Ls are both calculated using Equation 6.

An exact value for the capacitance C at resonance can be found by setting the imaginary part of Equation 15 to zero.
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